Wednesday, 30 October 2013

A port scanner

A port scanner is a software application designed to probe a server or host for open ports. This is often used by administrators to verify security policies of their networks and by attackers to identify running services on a host with the view to compromise it. A port scan or portscan can be defined as an attack that sends client requests to a range of server port addresses on a host, with the goal of finding an active port and exploiting a known vulnerability of that service, although the majority of uses of a port scan are not attacks and are simple probes to determine services available on a remote machine.

TCP scanning
The simplest port scanners use the operating system's network functions and is generally the next option to go to when SYN is not a feasible option (described next). Nmap calls this mode connect scan, named after the Unix connect() system call. If a port is open, the operating system completes the TCP three-way handshake, and the port scanner immediately closes the connection to avoid performing a kind of Denial-of-service attack. Otherwise an error code is returned. This scan mode has the advantage that the user does not require special privileges. However, using the OS network functions prevents low-level control, so this scan type is less common. This method is "noisy", particularly if it is a "portsweep": the services can log the sender IP address and Intrusion detection systems can raise an alarm.

SYN scanning
SYN scan is another form of TCP scanning. Rather than use the operating system's network functions, the port scanner generates raw IP packets itself, and monitors for responses. This scan type is also known as "half-open scanning", because it never actually opens a full TCP connection. The port scanner generates a SYN packet. If the target port is open, it will respond with a SYN-ACK packet. The scanner host responds with a RST packet, closing the connection before the handshake is completed.

The use of raw networking has several advantages, giving the scanner full control of the packets sent and the timeout for responses, and allowing detailed reporting of the responses. There is debate over which scan is less intrusive on the target host. SYN scan has the advantage that the individual services never actually receive a connection. However, the RST during the handshake can cause problems for some network stacks, in particular simple devices like printers. There are no conclusive arguments either way.

UDP scanning
UDP scanning is also possible, although there are technical challenges. UDP is a connectionless protocol so there is no equivalent to a TCP SYN packet. However, if a UDP packet is sent to a port that is not open, the system will respond with an ICMP port unreachable message. Most UDP port scanners use this scanning method, and use the absence of a response to infer that a port is open. However, if a port is blocked by a firewall, this method will falsely report that the port is open. If the port unreachable message is blocked, all ports will appear open. This method is also affected by 
An alternative approach is to send application-specific UDP packets, hoping to generate an application layer response. For example, sending a DNS query to port 53 will result in a response, if a DNS server is present. This method is much more reliable at identifying open ports. However, it is limited to scanning ports for which an application specific probe packet is available. Some tools (e.g., nmap) generally have probes for less than 20 UDP services, while some commercial tools (e.g., nessus) have as many as 70. In some cases, a service may be listening on the port, but configured not to respond to the particular probe packet.
To cope with the different limitations of each approach, some scanners offer a hybrid method. For example, using nmap with the -sUV option will start by using the ICMP port unreachable method, marking all ports as either "closed" or "open|filtered". The open|filtered ports are then probed for application responses and marked as "open" if one is received.

Window scanning
Rarely used because of its outdated nature, window scanning is fairly untrustworthy in determining whether a port is opened or closed. It generates the same packet as an ACK scan, but checks whether the window field of the packet has been modified. When the packet reaches its destination, a design flaw attempts to create a window size for the packet if the port is open, flagging the window field of the packet with 1's before it returns to the sender. Using this scanning technique with systems that no longer support this implementation returns 0's for the window field, labeling open ports as closed.


No comments:

Post a Comment